top of page
Duke.JPG

My deep curiosity with our brain began a few years ago when I saw my younger sister suffer from neurocysticercosis and wondered how a tiny cyst in her brain can impact her so much. I am grateful that she has fully recovered and hasn’t had to deal with seizures in several years now.

I have since made every effort to learn more about our brain. This included taking up all the biological sciences courses at school and doing very well in them, doing courses by myself on Coursera, pursuing competitive research programs in the summers after sophomore and junior years, working at a neuroscience lab for my Quest internship and conducting my own independent research post that, and doing college courses online at Cornell. I am grateful for these opportunities as they have really helped me build a solid base in the subject, made me fall in love with it even more, and prepared me well to pursue neuroscience in my undergraduate studies.

You can click on the links on the left to get a sense of my various neuroscience related activities. 

My Neuroscience Journey

Neuroscience Research Papers I've read:

Most of what I have learnt about neuroscience has been from these research papers that I have read over the course of my various projects. I have also written a couple of papers so far, one of which I have presented at the Brain Informatics Conference 2023 and am still working on the other.

NUS Internship: Visual Working Memory Research

1. Geng J.J. (2014). Attentional Mechanisms of Distractor Suppression. Curr Dir Psychol Sci. 23(2) 147-153. https://doi.org/10.1177/0963721414525780

2. Mazaheri et al. (2011). Pre-Stimulus Activity Predicts the Winner of Top-Down vs. Bottom-Up Attentional Selection. PLoS ONE 6(2): e16243. https://doi.org/10.1371/journal.pone.0016243

3. Olivers C.N.L. & Van der Stigchel S. (2020). Future Steps in Visual Working Memory Research, Visual Cognition, 28:5-8, 325-329. https://doi.org/10.1080/13506285.2020.1833478

4. Fukada K. & Vogel E.K. (2011). Individual Differences in Recovery Time From Attentional Capture. Psychol Sci. 22(3):361-368. https://doi.org/10.1177/0956797611398493

5. Liesefeld et al. (2020). How Visual Working Memory Handles Distraction: Cognitive Mechanisms and Electrophysiological Correlates. Visual Cognition https://doi.org/10.1080/13506285.2020.1773594

6. Miyake A. & Friedman N.P. (2012). The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Curr Dir Psychol Sci. 21(1):8-14. https://doi.org/10.1177/0963721411429458

7. Engel et al. (2016). Selective Modulation of Cortical State During Spatial Attention. Science 2016, 354(6316),1140-1144. http://dx.doi.org/10.1126/science.aag1420

8. Whitehead et al. Neural Dynamics of Cognitive Control Over Working Memory Capture of Attention. Journal of Cognitive Neuroscience 31:7,pp. 1079-1090. https://doi.org/10.1162/jocn_a_01409

9. Pessoa et al. (2002). Neural Correlates of Visual Working Memory: fMRI Amplitude Predicts Task Performance. Neuron Vol 35, 975-987

10. Awh E. & Vogel E.K. (2008). The Bouncer in the Brain. Nature Neuroscience Vol 11, Number 1, January 2008

11. Lara A.H. & Wallis J.D. (2015). The Role of Prefrontal Cortex in Working Memory: A Mini Review. Frontiers in Systems Neuroscience 2015, Vol 9, Article 173. https://doi.org/10.3389/fnsys.2015.00173

12. Murray et al. (2017). Stable Population Coding for Working Memory Coexists with Heterogeneous Neural Dynamics in Prefrontal Cortex. PNAS 2017 Vol 114, No.2, 394-399. www.pnas.org/cgi/doi/10.1073/pnas.1619449114

13. Parthasarathy et al. (2017). Mixed Selectivity Morphs Population Codes in Prefrontal Cortex. Nature Neuroscience 2017. https://doi.org/10.1038/s41593-017-003-2

14. Suzuki M. & Gottlieb J. (2013). Distinct Neural Mechanisms of Distractor Suppression in the Frontal and Parietal Lobe. Nat Neurosci. 16(1):98-104. https://doi.org/10.1038/nn.3282

Physiology of ADHD

15. Kofler et al. (2020). Working Memory and Short-term Memory Deficits in ADHD: A Bifactor Modeling Approach. Neuropsychology 34(6): 686-698. https://doi.org/10.1037/neu0000641

16. Sonuga-Barke, Brandeis, Cortese et al. (2013). Nonpharmalogical Interventions for ADHD: Systematic Review and Meta-Analyses of Randomized Controlled Trials of Dietary and Psychological Treatments. Am J Psychiatry 2013; 170:275-289

17. V. Gumenyuk et al. (2005). Electrophysiological Evidence of Enhanced Distractability in ADHD Children. Neuroscience Letters 374(2005) 212-217. https://doi.org/10.1016/j.neulet.2004.10.081

18. Daley D. & Birchwood J. (2009). ADHD and Academic Performance: Why Does ADHD Impact on Academic Performance and What Can Be Done to Support ADHD Children in the Classroom. Child: Care, Health and Development, 36,4,455-464. https://doi.org/10.1111/j.1365-2214.2009.01046.x

19. Qiu et al. (2010). Changes of Brain Structure and Function in ADHD Children. Brain Topogr (2011) 24:243-252. https://doi.org/10.1007/s10548-010-0168-4

RIBS: Neurobiology in C. elegans

20. Aguilera J. (2020). Regulation of Glutamate Receptor (GLR-1) Under Endoplasmic Reticulum Stress in Caenorhabditis elegans. Western CEDAR. https://cedar.wwu.edu/cgi/viewcontent.cgi?article=2009&context=wwuet

21. Ashrafi et al. (2003). Genome-wide RNAi Analysis of Caenorhabditis Elegans Fat Regulatory Genes. Nature, 421(6920), 268–272. https://doi.org/10.1038/nature01279

22. Bargmann et al. (1993). Odorant-selective Genes and Neurons Mediate Olfaction ... - Sciencedirect. Cell. https://www.sciencedirect.com/science/article/pii/009286749380053H

23. Biogenic Amine Neurotransmitters in C. Elegans. (n.d.-b). http://www.wormbook.org/chapters/www_monoamines/monoamines.html

24. Blandini et al. (1996). Glutamate and Parkinson's Disease - Molecular Neurobiology. SpringerLink. https://link.springer.com/article/10.1007/bf02740748

25. Brockie et al. (2006). Ionotropic Glutamate Receptors: Genetics, Behavior and Electrophysiology*. WormBook Neurobiology and behavior. http://www.wormbook.org/chapters/www_ionotropicglutatmaterecep/ionotropicglutatmaterecep.html 

26. cest-26 Carboxylic Ester Hydrolase [Caenorhabditis elegans] - Gene - NCBI. (n.d.). https://www.ncbi.nlm.nih.gov/gene/180715

27. cest-26 (gene) -  WormBase : Nematode Information Resource (n.d.).

https://wormbase.org/species/c_elegans/gene/WBGene00017478#0-9fcd-10

28. Chai, C. M., Cronin, C. J., & Sternberg, P. W. (2017, July 13). Automated Analysis of a Nematode Population-Based Chemosensory Preference Assay. Journal of visualized experiments : JoVE. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5612354/ 

29. Chalfie, M., Hart, A., Rankin, C. H., & Goodman , M. B. (2014, July 31). Assaying Mechanosensation*. WormBook WormMethods. http://www.wormbook.org/chapters/www_amchnosensation/amchnosensation.html 

30. Chase, D. L., & Koelle, M. R. (2007, February 7). Biogenic Amine Neurotransmitters in C. Elegans*. WormBook. http://www.wormbook.org/chapters/www_ monoamines /monoamines.html#sec4 

31. Chase, D., Pepper, J. & Koelle, M. Mechanism of Extrasynaptic Dopamine Signaling in Caenorhabditis Elegans. Nat Neurosci 7, 1096–1103 (2004). https://doi.org/10.1038/ nn1316

32. Cookson, M. R. (2011). a-Synuclein in Parkinson’s Disease. Cold Spring Harbor Perspectives in Medicine, 2(2), a009399. https://doi.org/10.1101/cshperspect.a009399

33. dop-1 (gene) -  WormBase : Nematode Information Resource. (n.d.). wormbase.org/species/ c_elegans/gene/WBGene00001052#0-9fcd16-10

34. dop-3 (gene) -  WormBase : Nematode Information Resource. (n.d.). https://wormbase.org/species/c_elegans/gene/WBGene00020506#0-9fcd1-10

35. Ezak, M. J., & Ferkey, D. M. (2010, March 2). The C. Elegans D2-like Dopamine Receptor DOP-3 Decreases Behavioral Sensitivity to the Olfactory Stimulus 1-octanol. PLOS ONE. https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0009487#s4 

36. Gaeta, A., Caldwell, K., & Caldwell, G. A. (2019). Found in Translation: The Utility of C. elegans Alpha-Synuclein Models of Parkinson’s Disease. Brain Sciences, 9(4), 73. https://doi.org/10.3390/brainsci9040073

37. Gaeta, A. L., Nourse, J. P., Willicott, K., McKay, L. J., Keogh, C. M., Peter, K., Russell, S. L., Hamamichi, S., Berkowitz, L. E., & Caldwell, G. A. (2022). Systemic RNA Interference Defective (SID) Genes Modulate Dopaminergic Neurodegeneration in C. elegans. PLOS Genetics, 18(8), e1010115. https://doi.org/10.1371/journal.pgen.1010115

38. Hart, A. C. (2006, July 3). Behavior*. WormBook WormMethods. http://www.wormbook.org/ chapters/www_ behavior/behavior.html

39. Hart, A. C., Kass, J., Shapiro, J. E., & Kaplan, J. M. (1999, March 15). Distinct Signaling Pathways mediate touch and Osmosensory Responses in a Polymodal Sensory Neuron. The Journal of neuroscience : the official journal of the Society for Neuroscience. https://pubmed.ncbi.nlm.nih.gov/10066248/ 

40. Hilliard, M. A., Bargmann, C. I., & Bazzicalupo, P. (2002, April 30). C. elegans Responds to Chemical Repellents by Integrating Sensory Inputs From the Head and the Tail. PubMed. https://pubmed.ncbi.nlm.nih.gov/12007416/ 

41. Hilliard, M. A., Bergamasco, C., Arbucci, S., Plasterk, R. H. A., & Bazzicalupo, P. (2004, March 10). Worms Taste Bitter: Ash neurons, qui-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans. The EMBO journal. https://www.ncbi.nlm.nih.gov /pmc/articles/PMC380969/ 

42. Hills, T., Brockie, P. J., & Maricq, A. V. (2004, February 4). Dopamine and Glutamate Control Area-restricted Search Behavior in Caenorhabditis Elegans. The Journal of neuroscience: the official journal of the Society for Neuroscience. https://pubmed.ncbi. nlm.nih.gov/14762140/ 

43. Harrington, A. J., Yacoubian, T. A., Slone, S. R., Caldwell, G. A., & Caldwell, G. A. (2012). Functional Analysis of VPS41-Mediated Neuroprotection in Caenorhabditis elegans and Mammalian Models of Parkinson’s Disease. The Journal of Neuroscience, 32(6), 2142–2153. https://doi.org/10.1523/jneurosci.2606-11.2012

44. Lie, P. P. Y., & Nixon, R. A. (2019). Lysosome Trafficking and Signaling in Health and Neurodegenerative Diseases. Neurobiology of disease, 122, 94–105.  doi.org/10.1016 /j.nbd.2018.05.015

45. Maricq, A. V., Peckol, E. L., Driscoll, M., & Bargmann, C. I. (1995). Mechanosensory Signaling in C. elegans Mediated by the GR-1 Glutamate Receptor. Nature, 378(6552), 78–81. https://doi.org/10.1038/378078a0

46. Park, L., Luth, E. S., Jones, K. D. J., Hofer, J. S., Nguyen, I., Watters, K., & Juo, P. (2021). The Snail Transcription Factor CES-1 Regulates Glutamatergic Behavior in C. elegans. PLOS ONE, 16(2), e0245587. https://doi.org/10.1371/journal.pone.0245587

47. Rangel-Barajas, C., Coronel, I., & Florán, B. (2015). Dopamine Receptors and Neurodegeneration. Aging and disease, 6(5), 349–368. doi.org/10.14336/AD.2015.0330

48. Roayaie, K., Crump, J. G., Sagasti, A., & Bargmann, C. I. (1998, January 20). The G alpha Protein ODR-3 Mediates Olfactory and Nociceptive Function and Controls Cilium Morphogenesis in C. elegans Olfactory eurons. Neuron. pubmed.ncbi.nlm.nih.gov/ 9459442/ 

49. Ruan, Q., Harrington, A. J., Caldwell, G. A., & Standaert, D. G. (2010). VPS41, A Protein Involved in Lysosomal Trafficking, is Protective in Caenorhabditis Elegans and Mammalian Cellular Models of Parkinson’s Disease. Neurobiology of Disease, 37(2), 330–338. https://doi.org/10.1016/j.nbd.2009.10.011

50. Sagasti, A., Hobert, O., Troemel, E. R., Ruvkun, G., & Bargmann, C. I. (1999, July 15). Alternative Olfactory Neuron Fates Are Specified By The LIM Homeobox Gene Lim-4. Genes & development. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC316880/#

51. Simmer, F., Moorman, C., Van Der Linden, A. M., Kuijk, E. W., Van Den Berghe, P. V. E., Kamath, R. S., Fraser, A. G., Ahringer, J., & Plasterk, R. H. (2003). Genome-Wide RNAi of C. elegans Using the Hypersensitive rrf-3 Strain Reveals Novel Gene Functions. PLOS Biology, 1(1), e12. https://doi.org/10.1371/journal.pbio.0000012

52. Sengupta, P. (2007). Generation and Modulation of Chemosensory Behaviors in C. Elegans, 454(5), 721–734. https://doi.org/10.1007/s00424-006-0196-9

53. U.S. National Library of Medicine. (1997). Acute Cerebellar Ataxia: Medlineplus Medical Encyclopedia. MedlinePlus. medlineplus.gov/ency/article/001397.htm#:~:text= Acute%20cerebellar%20ataxia%20is%20sudden,of%20the%20hands%20and%20legs. 

54. Van Der Welle et al. (2021). Neurodegenerative VPS41 Variants Inhibit HOPS Function and mTORC1‐dependent TFEB/TFE3 Regulation. Embo Molecular Medicine, 13(5). https://doi.org/10.15252/emmm.202013258

55. VPS-41 (gene) - wormbase : Nematode Information Resource. WormBase. (n.d.). https://wormbase.org/species/c_elegans/gene/WBGene00017974#0-9fc-10 

56. Wang, D., Yu, Y., Li, Y., Wang, Y., & Wang, D. (2014, December 23). Dopamine Receptors Antagonistically Regulate Behavioral Choice Between Conflicting Alternatives in C. Elegans. PloS one. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275273/ 

57. Wang, J., Wang, F., Mai, D., & Qu, S. (2020). Molecular Mechanisms of Glutamate Toxicity in Parkinson’s Disease. Frontiers in Neuroscience, 14, 585584. doi.org/10.3389/fnins.2020. 585584

58. Xu, Y., Zhang, L., Liu, Y., Topalidou, I., Hassinan, C., Ailion, M., Zhao, Z., Wang, T., Chen, Z., & Bai, J. (2021, March 1). Dopamine Receptor DOP-1 Engages a Sleep Pathway to Modulate Swimming in C. Elegans. iScience. www.ncbi.nlm.nih.gov/pmc/articles/ PMC7995527

59. Zheng, Y., Brockie, P. J., Mellem, J. E., Madsen, D. B., & Maricq, A. V. (1999). Neuronal Control of Locomotion in C. Elegans Is Modified by a Dominant Mutation in the GLR-1 Ionotropic Glutamate Receptor. Neuron, 24(2), 347–361. doi.org/10.1016/s0896-6273 (00)80849-1

Cognitive Control

60. Badre, D. (2008). Cognitive control, hierarchy, and the Rostro–caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12(5), 193–200. https://doi.org/10.1016/j.tics.2008.02.004

61. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. https://doi.org/10.1037/0033-295x.108.3.624

62. Clark, A. (2013). Whatever next? Predictive Brains, situated agents, and the future of Cognitive Science. Behavioral and Brain Sciences, 36(3), 181–204. https://doi.org/10.1017/s0140525x12000477

63. Cowan, N. (2019). Short-term memory based on activated long-term memory: A review in response to Norris (2017). Psychological Bulletin, 145(8), 822–847. https://doi.org/10.1037/bul0000199

64. Egner, T. (2014). Creatures of habit (and control): A multi-level learning perspective on the modulation of Congruency Effects. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.01247

65. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC):  A framework for perception  and action planning. Behavioral and Brain Sciences, 24(5), 849–878. https://doi.org/10.1017/s0140525x01000103

66. Mesulam, M. (1998). From sensation to cognition. Brain, 121(6), 1013–1052. https://doi.org/10.1093/brain/121.6.1013

67. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167

68. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 1–66. https://doi.org/10.1037/0033-295x.84.1.1

69. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127–190. https://doi.org/10.1037/0033-295x.84.2.127

Others

70. Mahajan N.R. & Mysore S.P. (2018). Combinatorial Neural Inhibition for Stimulus Selection Across Space. Cell Reports 25,1158-1170. https://doi.org/10.1016/j.celrep.2018.10.022

71. Colon-Ramos D.A. (2016). The Need to Connect: On The Cell Biology of Synapses, Behaviours, and Networks in Science. The American Society for Cell Biology 2016, Vol 27. https://doi.org/10.1091/mbc.E16-07-0507

72. Tse et al. (2011). Voluntary Attention Modulates Motion-Induced Mislocalization. Journal of Vision (2011) 11(3):12,1-6

73. Arnsten A.F.T. & Rubia K. (2012). Neurobiological Circuits Regulating Attention, Cognitive Control, Motivation, and Emotion: Disruptions in Neurodevelopmental Psychiatric Disorders. Journal of the American Academy of Child & Adolescent Psychiatry Volume 51, Number 4, April 2012

© 2023 by Jia Lakhamraju

  • Instagram
  • LinkedIn
bottom of page